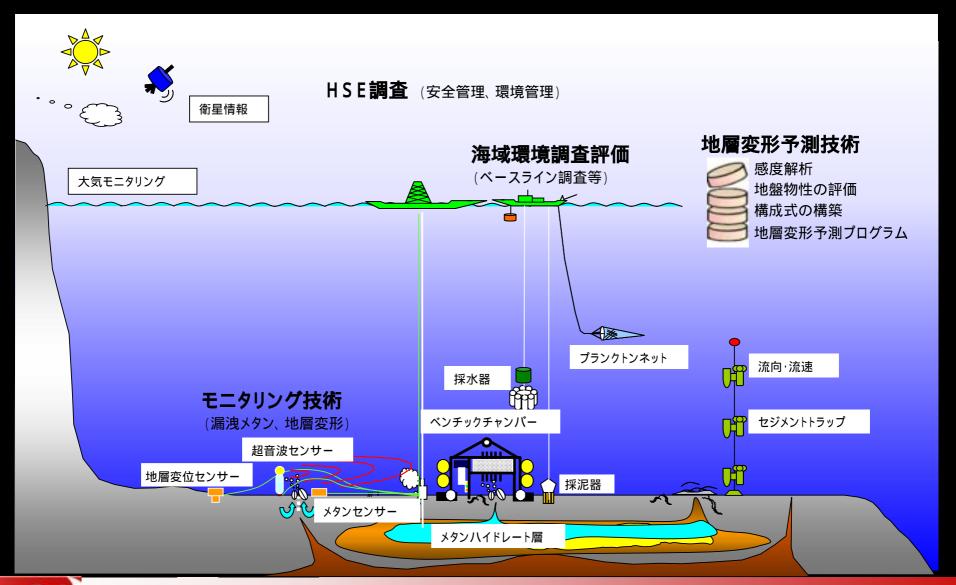
環境への課題

- 自然環境との調和の実現に向けて-

平成17年度研究成果報告

環境影響評価分野

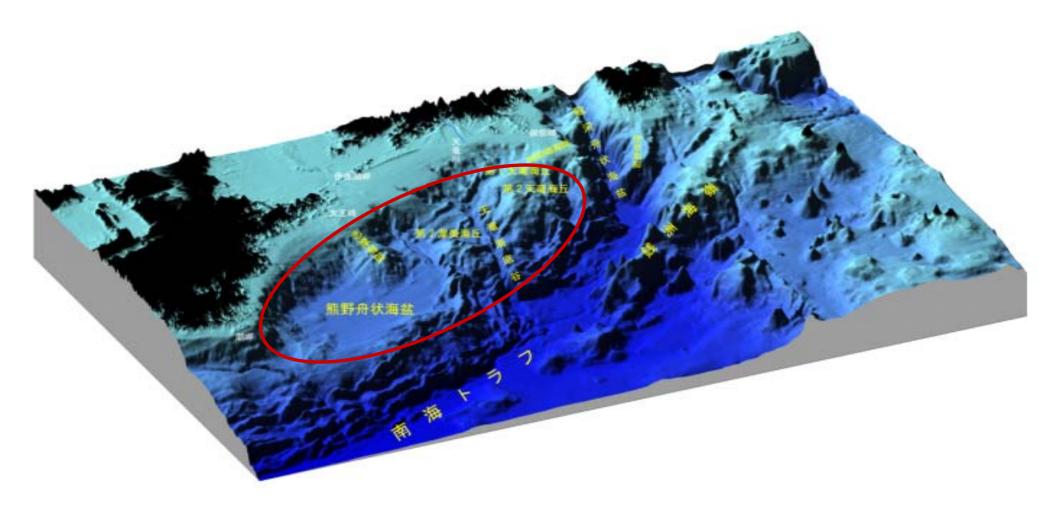

環境影響評価グループリーダー 大関 真一

財団法人エンジニアリング振興協会

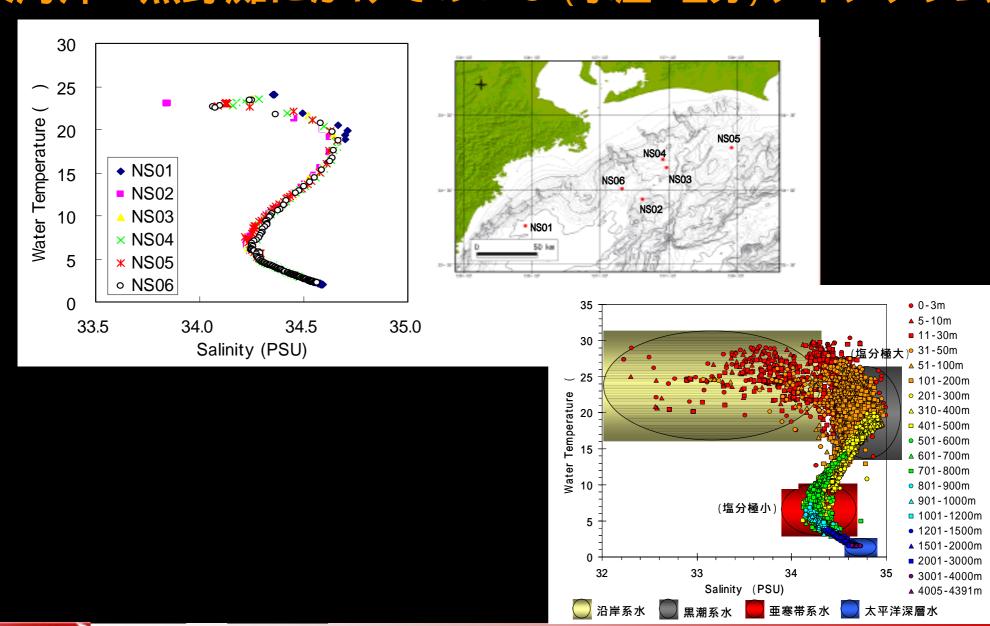
環境影響評価グループの任務

- → 環境への負荷(インパクト)が許容される範囲に収まることの 見通しに関して検討するために、海洋自然環境の実態を知り、 環境負荷のメカニズムのあらましを分析しておくこと。
- ▶ 水深の大きな海域における在来型石油·天然ガス資源開発 の安全・環境面の現況を調査・分析し、また、MH資源開発に 適用される予定の技術手法の特徴に照らした場合、 どのような課題、配慮事項があるのか予見を行うこと。
- ▶ 開発生産時の環境・安全面に関わる現象を有効にモニタリング するためのツールの要素技術を開発しておくこと。

メタンハイドレート資源開発研究コンソーシアム 環境影響評価グループ全体イメージ


フェーズにおける主な研究開発課題

- 1.海域環境調査評価サブグループ
 - MH資源フィールドの環境条件(環境・生態系)の把握MH分解生成水の海洋環境への影響に関する評価HS&E、問合せに対応するデータベースの構築
- 2.モニタリング技術サブグループ
 メタンガス漏洩/地層変形モニタリング要素技術の開発
- 3. HSE調査サブグループ 安全管理システムの検討(フェーズ2の海洋産出試験に向けて)
- 4.地層変形予測技術サブグループ 地層変形予測シミュレータ(プロトタイプ)の開発


海域環境調査評価SGの活動内容

- 1.ベースライン調査
 - ●基礎試錐調査域を含む南海トラフ海域(東海沖~熊野灘)に おける海域環境の特徴を明らかにするための調査
- 2.海域環境への影響を評価・解析するための手法開発
 - ●MH分解生成水放出影響予測モデルの開発
 - ●漏洩メタンの海水中での挙動予測モデルの開発
- 3. データベースシステムの構築
 - ●環境影響に係る各種情報の収録

南海トラフ(熊野灘~東海沖) の海底谷と海丘

東海沖~熊野灘にかけてのT-S (水温-塩分)ダイアグラム

海底堆積物試料

底生生物

ワンショットカメラによる海底面の撮影

【熊野灘(MC02)試料】 表層部分は浮泥様の 堆積物で覆われている。

第二渥美海丘(MC01)試料】 表層部分は砂泥の堆積物 で覆われている。

モニタリング技術SGの活動内容

- 1.総合モニタリングシステムの基本設計
 - ●総合モニタリングシステムの基本仕様の整理
- 2.メタンガス漏洩を早期検知する溶存メタン検知法の開発
 - 直接検知法:METSセンサー、集水型モニタリングシステム
 - ●METSセンサーの改良
 - ●集水型モニタリングシステム初期モデルの構築
 - 間接検知法:メタン酸化細菌によるバイオマーカー
 - ●メタン酸化細菌分布の把握及び分離培養
- 3.海底地層の微小変形を検知するモニタリング技術開発
 - ●地層変形モニタリングシステムの製作

直接検出法

METSセンサー

METSセンサー(ドイツ製)の基本的特性や実用上の課題点を抽出し、「リアルタイムセンサー」として適用可能性の調査

CAPSUM Technologie GmbH				
項目	仕樣			
材質	チタン製			
	1 k g			
水深	0 ~ 2000m			
水温	2 ~ 20			
測定レンジ	10 ~ 4000nmol/L			
分解能	± 2% of Full Scale (± 80nmol)			
応答性	1~30min(状況により変化)			

分離膜の材質変更及び膜厚薄くして、透過性能向上

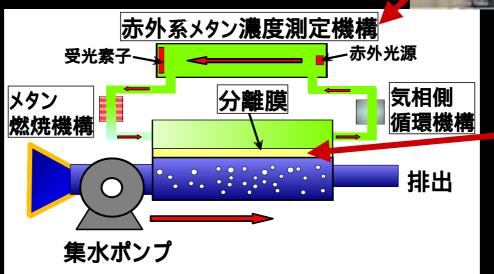
ディテクタールームの体積を小さくして、応答性を向上 (分離膜透過側体積を1/5程度に縮小)

基盤と回路の統合により電力消費量の低減と安定性向上

応答時間:約300秒 約60秒(濃度上昇時90%応答)

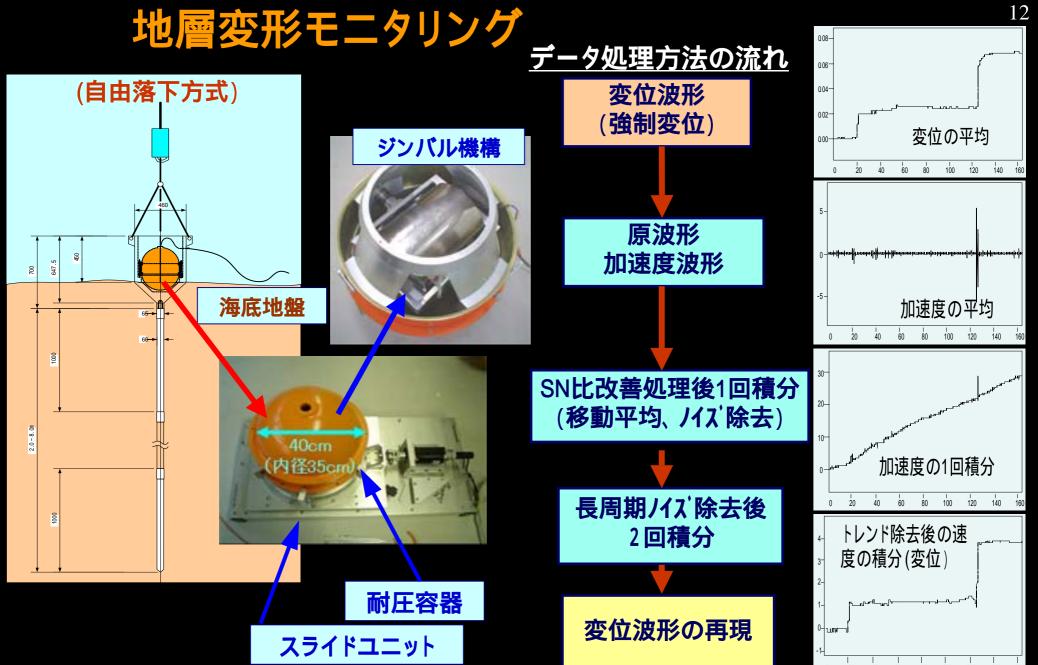
直接検出法 集水型モニタリングシステム

新規開発の集水型センサー(ポンプによる海水の供給)


- ・測定精度の向上を目的
- ・プロトタイプ機の構築に向けた課題の明確化

平成17年度実施内容

- 1. 平成16年度に作成した集水型モニタリング システム初期モデルの性能評価試験
- 2. 構成要素の高性能化、小型化 光学系の組み込み及び集水用ポンプの小型化 メタン燃焼機構(ヒーター)の操作方法の最適化
- 3. 分離膜の試作


安定化(ノイズの低減)、高感度化の 実施により適応可能

分離膜は、多孔質チューブに シリコン溶液をディップコーティ ング、もしくはシリコンチューブ を被覆を検討

HSE調査SGの活動内容

1.安全管理システム

- 日本近海試錐調査作業のレビュー
- ◆ 大水深オペレーションにおける安全管理システムの要件の調査

2.環境管理システム

- 大水深オペレーションにおける環境管理の調査
- MHによる環境影響に関する文献調査

地層変形予測技術SGの活動内容

1. 地盤物性の評価

- 基礎試錐「東海沖~熊野灘」コア試料の室内試験
- 海底地盤模擬試料の室内試験
- 地層変形予測の検討対象とする地層モデルの設定

2.構成式の構築

○ 基礎試錐コア試料及び海底地盤模擬試料の三軸試験を 対象としたシミュレーション及び数値解析

3.地層変形予測プログラムの開発

● 地層変形予測プログラムのプロトタイプの開発

力学試験装置

基礎試錐「東海沖~熊野灘」 コア試料(砂泥互相の一例)

低温高圧圧密試験装置

> 物理試験

含水比、土粒子密度、粒度分布、液性限界·塑性限界、密度、X線回折

- > 段階載荷圧密試験
- ➤ K₀圧密非排水三軸圧縮試験

メタンハイドレート関発計画の日煙及バスケジュール(フェーズ

	~ 2 0 0 5 年度(H17FY)	2 0 0 6 年度(H18FY)	2 0 0 7 年度 (H19FY)	2 0 0 8 年度 (H20FY)	最終目標		
環境影響		・海洋産出試験に適 用する環境影響評価					
評価グループ	・2003、2004海域環境調査の概査を 実施 ・南海トラフ(東海沖~熊野灘)海 域の海域環境の特徴をとりまとめ。 ・南海トラフ(東海沖~熊野灘)周 辺海域の水塊構造の特徴、海底近傍 に生息する生物種と生物量を把握。	・南海トラフの海域ごとの特徴を整理 ・漏洩メタンの挙動予測モデル	・海域環境の経年的な変動特性等を解析 性等を解析 低温水放出影響モデルを整備 ・拡散範囲等を予測	・海洋産出試験における 環境影響評価するために 必要な方法と課題を整理	手法を策定		
	ガス		・ガス漏洩検知技術・				
	・METSセンサーの改良に より応答性向上(室内試験、浅海 域試験により検証)。	・METSセンサーのプロト タイプ機の開発 ·実海域(大	水深)試験の運用	・METSセンサーのプロ トタイプ機の総合評価	地層変形検知技術の モニタリングシステ ム(プロトタイプ機) の完成		
	・選定したサーボ型加速度計、傾 斜計等を組み込んだシステムの性 能試験を実施。	・地層変形モニタリングプロトタイプ機の開発 ・プロトタイプ機の陸域での性能評価	・プロトタイプ機の浅海域で の性能評価 ・海洋産出試験への適応性評 価	・地層変形モニタリング プロトタイプ機の完成	0.7 . 6.0%		
		・地層変形予測モデ					
	・「弾粘塑性構成式」を選定	・地層変形予測モデルの構築、 ・構成式の構築及び地盤物性 させてプログラムを構築。	地層変形予測モデルの開発 の評価データをフィールドバック		ルのプロトタイプの 完成		
		・ 第2回陸上産出試験の結果を 向上を図る。	反映することにより、更なる精度				
		・メタンハイドレー					
	・北海沿岸国(英国・ノル ウェー)、豪州の監督官庁及び制 度についてとりまとめ。	・カナダにおける法規制等 を調査(遠隔地で孤立した 油田特有の安全管理・環境 管理の情報を取得)	・ブラジルにおける法規制等 を調査(大水深開発の活発な 海域における安全管理・環境 管理の情報を取得)	・ブラジルにおける法規制等を調査及びフェーズ 1 に収集した情報の整理	ト開発に伴う安全、 環境に関する情報の 整理		
	~						

