メタンハイドレートフォーラム 2016

メタンハイドレート資源開発研究コンソーシアム(MH21) 資源量評価グループ 森田澄人 (産総研・地圏資源環境研究部門)

2016年12月6日 東京大学 伊藤国際学術研究センター 伊藤謝恩ホール

メタンハイドレート資源開発研究コンソーシアム Research Consortium for Methane Hydrate Resources in Japan

PAIST

表層型メタンハイドレート資源量調査結果検討委員会

- 第1回 平成28年3月16日(水) 経済産業省 別館
- 第2回 平成28年7月26日(火) 経済産業省 別館
- 第3回 平成28年8月31日(水) 経済産業省 別館
- 委員長 荒戸裕之(国立大学法人秋田大学)
- 委 員 小野崎正樹(一般財団法人 エネルギー総合工学研究所) 川本尚実(JXリサーチ株式会社)

木川栄一(国立研究開発法人海洋研究開発機構)

山口隆志(一般財団法人 エンジニアリング協会)

主催·事務局 産総研 地圈資源環境研究部門

PAIST

H25~H27年度 表層型メタンハイドレート資源量調査

平成16年以降の東京大学を中心とした調査により、上越沖などのガスチムニー構造(音響 学的ブランキング)をともなうマウンドなどの特異点において、海底下ごく浅層部に塊状メタン ハイドレートが確認されてきた。

平成25年4月の海洋基本計画を受け、平成25年度~27年度において日本海を中心に資源 量把握に向けた広域的な海洋調査を実施した。

実施した調査項目 ①広域地質調査(船底音響機器探査) ・・・特異点の探索 (2)詳細地質調査(AUV音響探査) ・・・特異点周辺の超音波構造探査 (3)精密地震探査(3D地震探査) ・・・エアガン構造探査 ④海洋電磁探査(CSEM探査) ・・・比抵抗分布の曳航式探査 ⑤掘削同時検層(LWD:Logging While Drilling)・・・坑井の物性測定 ⑥掘削地質サンプル採取(コアリング+CPT)・・・ハイドレートなど堆積物採取 (7)環境調査(ROV潜航調査+長期モニタリング)・・・環境ベースライン調査

表層型メタンハイドレート資源量の推定

音響(超音波)探査	①広域および②詳細地質調査による特異点の分布と構造の把握 ・ガスチムニー構造の探索とタイプ区分 ・詳細地質構造と音響学的特徴の抽出				
物理探査					
 ③精密3D震探による構造探査 ・ガスチムニー構造内部の構造を抽出 ・音響学的特徴の抽出(速度異常の利用) 		④海洋 •高比 •比排	洋電磁探査による空間分布の推定 こ <mark>抵抗部</mark> の抽出 低抗値から濃集度の概算		
掘削調査					
 ⑤LWDによる資源量の推定 ・各センサーによる坑井周辺地層の物理性状の把握からハイドレート部を抽出 		 ⑥掘削地質サンプルを用いた推定 ・塩素濃度異常からハイドレート量を推定 ・保圧コアの全コア分解実験によるハイドレート 量の推定 			
資源量の推定					

DAIST

H25~H27年度海洋調査: エリアと調査種目

①広域地質調査 : 調査の概念

<概査モード>

MBESによる地形特異点の捜索 測線間隔:約3.0km(水深による)

<精査モード>

SBPによる地形特異点の構造把握 測線:地形特異点を通るように設定

①広域地質調査 : 調査海域

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

①広域地質調査: 特異点の評価

<特異点の評価基準>

特異点を抽出

- ・マウンド(M)
- ・ポックマーク(P)
- •平坦地(F)
- ・その他(X)

音響ブランキング(ガスチムニー構造)の有無 ・有り(1) ・無し(2)

②詳細地質調査(AUV探査) : AUV探査の概念図

②詳細地質調査(AUV探査) : AUV探査の実績と広域調査との比較

AUV探査の実績

	隠岐トラフ		上越沖		最上トラフ		ダイヴ数
	通常	精密	通常	精密	通常	精密	
H25年度	-	-	7	4	-	-	11
H26年度	4	-	3	2	7	-	16
H27年度	4	-	2	1	2	-	9

計36ダイヴで 303.7 km²を探査(①広域調査の0.5%)

上越沖の鳥瞰図

②詳細地質調査(AUV探査) : 特異点の特徴

- ・マウンドには表層の凹凸が顕著なものがあり、これらはSSSで強反射を示す場合がしばしばである。
- ・ポックマークは陥没構造を示し、地形的に明瞭だが、海底はスムース。
- ・ガスチムニー構造は強反射タイプと減衰タイプに分けられ、塊状ハイドレートは強反射タイプに期待される。

③精密地震探査(3D地震探査):精密三次元地震探査の概要

上越沖の表層メタンハイドレートエリアにおいて、高分解能三次元反射法地震探査を実施し、三次元的イメージングを行い、SBPでは不明瞭だったガスチムニー構造内部の地質構造を明らかにする。

実施は平成27年度の み

探査仕様

- ・ストリーマケーブル 約150m を18本 (浅層部を対象に非常に短い)
- ・チャンネル数 24ch x 18 = 計192ch
- •測線間隔 12.5m
- ・エアガン 高周波数GIガン

③精密地震探査(3D地震探査): 精密三次元地震探査の概要

④海洋電磁探査(CSEM探査): CSEM探査の概念

The Marine EM laboratory at Scripps Institution of Oceanography http://marineemlab.ucsd.edu/

④海洋電磁探査(CSEM探査): CSEM探査の適用エリアと解析結果

有限体積法:粗分割メツシュ+移動詳細分割メツシュ

平滑化条件付き最小自乗法:上限・下限値(0.5~2000Ωm) 要素分割:Δ25m×Δ25m×Δ10mメッシュ

逆解析用データ

- 周波数:1,3,5,7,9,13Hz
- Vulcans(Rx):N=2, 3, 4 と N=1(重みを低減)
- 電場の全振幅:(Re(E)² + Im(E)²)^{1/2}

⑤掘削同時検層(LWD):調査の概要

平成26年度(GreatRagini)および27年度(白嶺)に実施

調査海域

上越沖、最上トラフ、隠岐トラフ

調査種目

- GeoVISION:比抵抗、比抵抗イメージ
 NeoScope:密度、中性子孔隙率、γ線スペクトル、 シグマ、自然γ線(平成27年度のみ)
 TeleScope: MWD、伝送、発電
 SonicVISION:音波速度(平成26年度のみ)
 SonicScope:S波を含む音波速度(平成27年度のみ)
- ・SonicScope: S波を含む音波速度(平成27年度のみ) ・ProVISION: NMR

平成27年度のLWDツール(シュルンベルジェ)

⑤掘削同時検層(LWD):調査の概要

AIST

⑥掘削地質サンプル採取(コアリング) : 調査の概要

平成26年度(白嶺)および27年度(Poseidon1)に実施

調査海域

上越沖、最上トラフ、隠岐トラフ

- 使用したコアリングツール 平成26年度(Fugroシステム) ・非圧コアラー 平成27年度(GeoTek システム) ・非圧コアラー ・正力コアラー
- コーン貫入抵抗(CPT)の実施

実施した解析項目など
・保圧コアによる全量分解実験
・柱状図作成・コア写真
・ハイドレート量
・年代層序
・ガス組成・間隙水組成
・コーン貫入抵抗試験(CPT)

		隠岐トラフ	上越沖	最上トラフ	合計			
LWD掘削	H26	0	5	6	33			
	H27	4	18	0		新潟		
コアリング掘削	H26	0	3	2	28	20	20	直江達
	H27	5	18	0				
CPT地盤強度試験	H26	0	0	0	8	0	0	
	H27	0	8	0				
合計		9	52	8		境港 舞鶴		

⑥掘削地質サンプル採取(コアリング) : 調査の概要

隠岐トラフ海域

上越沖海域 1

上越沖海域 2

資源エネルギー庁プレス発表(2016/1/22)より

表層型メタンハイドレート資源量の推定(対象の絞り込み)

資源量評価対象の絞り込み ⇒「海鷹海脚中西部(CW)マウンド構造」

海鷹CWマウンド

・2年目調査の掘削により、ガスチムニー構造内部のハイドレートの分布は不均質であることが分かった。対象を絞り込んで掘削し、詳細な資源量評価の対象とした。

・これまでに最もデータが集まり塊状ハイドレートも確認されている箇所の一つである「海鷹海脚中西部(CW)マウンド構造」を対象に選定した。

(後に紹介するType-Sのガスチムニー構造)

④ 掘削同時検層(LWD)による資源量推定

ガスチムニー構造内での3次元的な資源量の推定 (海鷹海脚CWマウンド構造)

・LWD坑井において水平なハイドレートによる音波速度Vpの高速度異常を 基に推定したハイドレート体積分率推定結果をデータとして、3次元空間内 で内挿・外挿による補間により3次元ソリッドモデルを構築し、ハイドレート量 を試算。

ハイドレート高濃集部から離れるほど濃集度が下がる、水平方向により連続性が高いと仮定。

・地形、比抵抗、地震探査から北西-南東方向の地質トレンドが存在。ハイ ドレートの分布にも方向性が存在すると仮定した場合についても推定。

海鷹海脚CWマウンド構造を仮想(ダミー)坑井で 囲んでモデリングを構築する

⑥ 海洋電磁探査による高比抵抗部の体積概算

© 掘削コアによる資源量推定

AIST

表層型メタンハイドレート資源量の推定(海鷹海脚CWマウンド構造)

掘削坑井を基準にした推定

④LWDによる資源量の推定 (4種推定法の試み)	⑦掘削コアによる推定(1) (非圧コアの利用)	●掘削コアによる推定(2) (圧カコアの利用)		
· 岩相推定法 · 孔隙率法	・間隙水の <mark>塩素濃度異常</mark> から分 解前のハイドレート量を推定	└ └ ・ <mark>全量分解</mark> 実験による全ガス量 └ (ハイドレート換算)の推定		
音波検層法によるボリュームの 推定(金属鉱床の手法の適用)	海鷹CWマウンドを5領域に区	分して、平均含有量から算出		
ハイドレートの体積 <u>約370万 m³</u> ガスに換算した総量	ハイドレートの体積 <u>約415万 m³</u> ガスに換算した殺量			
約八回次年07280 <u>年</u> 約6. 12億 m ³ 約0.021Tcf	約6.81億 m ³ 約0.024Tcf			

曳航探査を基にした推定

⑧海洋電磁探査による高比抵抗体の概算 ハイドレートを含む高比抵抗体の体積 <u>数100万 m³のオーダー</u>

